Silicon availability modifies nutrient use efficiency and content, C:N:P stoichiometry, and productivity of winter wheat (Triticum aestivum L.)

نویسندگان

  • Silke Neu
  • Jörg Schaller
  • E. Gert Dudel
چکیده

Silicon (Si) is known as beneficial element for graminaceous plants. The importance of Si for plant functioning of cereals was recently emphasized. However, about the effect of Si availability on biomass production, grain yield, nutrient status and nutrient use efficiency for wheat (Triticum aestivum L.), as one of the most important crop plants worldwide, less is known so far. Consequently, we assessed the effect of a broad range of supply levels of amorphous SiO2 on wheat plant performance. Our results revealed that Si is readily taken up and accumulated basically in aboveground vegetative organs. Carbon (C) and phosphorus (P) status of plants were altered in response to varying Si supply. In bulk straw biomass C concentration decreased with increasing Si supply, while P concentration increased from slight limitation towards optimal nutrition. Thereby, aboveground biomass production increased at low to medium supply levels of silica whereas grain yield increased at medium supply level only. Nutrient use efficiency was improved by Si insofar that biomass production was enhanced at constant nitrogen (N) status of substrate and plants. Consequently, our findings imply fundamental influences of Si on C turnover, P availability and nitrogen use efficiency for wheat as a major staple crop.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Production System Techniques to Increase Nitrogen Use Efficiency in Winter Wheat*

Most current research on winter wheat (Triticum aestivum L.) focuses on increasing yields of either grain or plant biomass. Increased production costs and environmental awareness will promote the development of methods to increase the efficiency of applied nutrients. Nitrogen (N) is often the most limiting nutrient for cereal grain production and represents one of the highest input costs in agr...

متن کامل

Assessment of Root Growth and Physiological Responses of Four Bread Wheat (Triticum aestivum L.) Cultivars to Salinity Stress

Enlarged root systems that extend into the salt affected soil improve water and nutrient capture by plants and can increase plant productivity. In order to examine root system characteristics of four bread wheat cultivars contrasting in salt tolerance (Arg, Ofoq, Tajan and Morvarid) a greenhouse experiment was conducted with applying two salinity levels (0 and 150 mM NaCl) on plants grown in PV...

متن کامل

Over-Expression of a Tobacco Nitrate Reductase Gene in Wheat (Triticum aestivum L.) Increases Seed Protein Content and Weight without Augmenting Nitrogen Supplying

Heavy nitrogen (N) application to gain higher yield of wheat (Triticum aestivum L.) resulted in increased production cost and environment pollution. How to diminish the N supply without losing yield and/or quality remains a challenge. To meet the challenge, we integrated and expressed a tobacco nitrate reductase gene (NR) in transgenic wheat. The 35S-NR gene was transferred into two winter cult...

متن کامل

In Vivo Determination of Parameters of Nitrate Utilization in Wheat (Triticum aestivum L.) Seedlings Grown with Low Concentration of Nitrate in the Nutrient Solution.

Six genotypes of winter wheat (Triticum aestivum L.) differing in grain protein concentration were grown on a nutrient solution containing low concentrations of NO(3) (-) (2 millimolar). Total NO(3) (-) uptake varied between genotypes but was not related to grain protein content. An in vivo nitrate reductase assay was used to determine the affinity of the enzyme for NO(3) (-), and large phenoty...

متن کامل

Spelt (Triticum aestivum ssp. spelta) as a source of breadmaking flours and bran naturally enriched in oleic acid and minerals but not phytic acid.

The nutritional value of breadmaking cereal spelt (Triticum aestivum ssp. spelta) is said to be higher than that of common wheat (Triticum aestivum ssp. vulgare), but this traditional view is not substantiated by scientific evidence. In an attempt to clarify this issue, wholemeal and milling fractions (sieved flour, fine bran, and coarse bran) from nine dehulled spelt and five soft winter wheat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017